
Communications and smart Motion control in one shield!

Introduction
The ComMotion is an I²C controlled, 4 channel motor controller in an R3 shield format. The advantage of using I²C is
that the shield only uses 2 pins. This leaves most of your pins free for use with other shields, sensors and circuits.

The ComMotion shield can drive 4 DC brushed motors up to 2.5A continuous each with peak currents up to 4A per
motor. Current monitoring is used to limit the maximum current for each motor. Each motor has an encoder input that
can be used for precise speed control. Encoder feedback also gives the motor much more torque at low speeds.

Preset configurations allow you to control robots with either omni or mecanum wheels by sending the ComMotion shield
only 3 simple values: Velocity, Angle and Rotation. The two ATmega328P onboard processors will then do the
trigonometry required to calculate the correct speed for each individual motor.

If encoders are not being used then the shield will still function normally but motor speed control will be the same as with
standard motor drivers. Speed control will be less accurate and the motors will have much less torque at low speeds.

Each processor has it's own serial port broken out into an FTDI header. These serial ports can be used for GPS,
Bluetooth and LCD modules while leaving your Arduino serial port free for uploading and debugging code. The serial
port on MCU2 is also broken out into a socket for an XBEE or WiFly wireless transceiver with voltage translation circuitry
and a dedicated 300mA, 3.3V regulator.

Wireless Control
The default configuration allows the ComMotion shield to accept serial commands
directly from the serial port on MCU2. Just plug in a pre-configured Xbee, WiFly or
Bluetooth module and you have instant wireless control. No Arduino required.

Motor 2

Encoder 2

Motor 4

Encoder 4

Encoder 3

Reset
Button

6V - 16V
DC

Motor 1

Encoder 1

Motor 3

+ Positive

- Negative

MCU1MCU1
M2

LED
M2

LED

M1
LED
M1

LED

M3
LED
M3

LED

M4
LED
M4

LED
MCU2MCU2

I²C
Address
Select

Vin
Isolation
Jumper

5V
Power
LED

3.3V
Power
LED

Xbee / WiFly
TX and RX LEDs

ISP Reset
Jumper

MCU
Program
Selection
Switch

FTDI 1

FTDI 2

D
T

R
T

X
R

X
N

C
N

C
G

N
D

D
T

R
T

X
R

X
N

C
N

C
G

N
D

D
T

R
T

X
R

X
N

C
N

C
G

N
D

D
T

R
T

X
R

X
N

C
N

C
G

N
D

SS
SS

SS

SS

SS

SS

+3.3V+3.3V
DOUTDOUT
DINDIN

GNDGND

5V
1A
5V
1A

3.3V
300mA

3.3V
300mA

WWW.AREXX.COM.CN

Manufacturer:
DAGU Hi-Tech Electronic Co.,LTD

RS039

The manufacturer and distributor cannot be held responsible
for any damages occurred by mishandling, mounting mistakes
or misuse due to non-respect of the instructions contained in
this manual.

Copyright 2014 by DAGU Hi-tech Electronic Co., Ltd.
All rights reserved. No portion of this instruction sheet or any
artwork contained herein may be reproduced in any shape or
form without the express written consent of DAGU Hi-tech
Electronic Co., Ltd.

C

Contents

Powering ComMotion

Out of the box

Using ComMotion for the first time

Controlling ComMotion - I²C data packs

Basic Configuration

Encoder Configuration

Controlling the motors

Serial configuration

Sending serial data

Receiving serial data

Requesting shield status

Motor error log

Communications error log

Re-programming ComMotion

Specifications

Using chassis configurations

1

1

1

2

2

3

4

4

5

5

5

6

6

6

7

8

The ComMotion PCB is a 4 layer, double sided PCB that packs a lot of features into one small shield.

Powering ComMotion
The ComMotion shield can draw as much as 10A of current with 4 motors running at 2.5A each so it is important to use
good quality NiMh batteries or a Lithium battery pack, do not use Alkaline batteries. Arduino boards are not designed for
such high currents so you should connect your battery pack or power supply straight to the ComMotion shield. With the
Vin jumper shorted, The Arduino board will get power from the shield.

As the ComMotion shield can work on a wider voltage range than most Arduino boards it may be necessary to power it
from a separate power supply. Remove the Vin jumper to isolate The Arduino Vin from the ComMotion's power supply.
You can then power the Arduino board and the ComMotion shield from separate battery packs or power supplies.

Out of the box
The ComMotion shield comes with demonstration software used in the Scamper robot kit. When you first turn it on it will
play a tune if the demo mode is on or or beep a few times if it is off using all connected motors for speakers. If it has not
received any data or commands from the I²C bus or a serial port by the time the tune is complete it will then run in demo
mode. The demonstration program can be toggled on or off by pressing the reset button or cycling the power. Even if
you are not using a Scamper robot this is a useful tool to determine if the board is functioning ok. Once the shield has
received data or a command it will no longer default to demonstration mode unless you re-set the configuration to
demonstration mode.

The ComMotion shield comes pre-programmed to work as an I²C controlled, 4 channel, smart motor controller. The
term smart refers to the fact that the controller will use encoder inputs to try and maintain steady motor speeds
regardless of the motors load. This allows the motors to be driven at low speeds and maintain full torque without stalling.
If you are not using encoders then this feature can be disabled in the configuration. The controller will then behave like a
standard motor controller.

Using ComMotion for the first time
The first thing to do is determine which I²C address you want to use. Even if you plan to use serial control you should
check to make sure the shields I²C addresses do not conflict with any other I²C devices you might be using as the two
processors communicate with each other using the I²C bus.

The ComMotion shield defaults to I²C addresses 30 and 31 with all dip switches off. If this conflicts with another device
on the bus then use the table below to select a new address. Although there are 2 processors on the I²C bus you only
need to communicate with MCU1. The address of MCU2 is only shown here to help prevent conflict with other devices.

0

1

2

3

4

5

6

7

DIP SWITCH ADDRESS

MCU1 MCU2

0 1

2 3

4 5

6

8

10

12

14

7

9

11

13

15

SETTING

DECIMAL

VALUE

8

9

10

11

12

13

14

15

DIP SWITCH ADDRESS

MCU1 MCU2

16

18

20

22

24

26

28

30

17

19

21

23

25

27

29

31

SETTING

DECIMAL

VALUE

1

Basic Configuration
You will need to configure the ComMotion shield at least once to suit your application. This is done by sending a basic
configuration data packet which consist of 9 bytes as listed below:

Byte Function Short Description
1 1=basic config. Specifies that the data pack is basic configuration data.
2 mode 0=I²C or Serial input 1=demo mode
3 configuration 0=3x Omni 1=4x Omni 2=Mecanum 3=individual +16=encoders off
4 low battery voltage 60 = 6.0V use 60 for 2S LiPo use 90 for 3S LiPo batteries
5 max current M1 255 = 2.55A
6 max current M2 255 = 2.55A
7 max current M3 255 = 2.55A
8 max current M4 255 = 2.55A
9 I²C offset 0=no offset I²C address offset used to extend range of available I²C addresses
10

Byte 1: Must always 1. This tells the shield that the data pack is basic configuration data.
Byte 2: Demo mode is the default. Set to 0 if you want to control the shield by I²C or Serial commands.
Byte 3: Select your chassis configuration or select individual motor control. Add 16 if you don't use encoders.
Byte 4: Default value is 60 (6V). This value is the minimum battery voltage x10. Shutdown occurs below this voltage.
Bytes 5-8: You can set a maximum motor current for each motor. The default is 255 which is equal to 2.55A.
Byte 9: If necessary you can offset the I²C address by this amount to avoid conflicts. Default value is 0.
Byte10: The ComMotion shield is an

I²C master address 1=default value This is the address of the external I²C controller.

I²C multi-master device. If your using an external controller as an I²C master then it
must be at this address to receive status reports and warnings. Default value is 1.

2

Controlling ComMotion
All commands are sent to the ComMotion shield using either the I²C bus or a serial port. The commands are all sent as
data packets. This is actually much simpler than it sounds and once the configuration packets are sent you will mostly
use command 3 to control the motor speeds.

The first byte of each data pack tells the shield what type of information is being sent. The rest of the pack is the
information needed to complete that command.

Bytes can only have a value from 0 to 255 but some information will be bigger numbers called Integers. are 16
bit numbers and must be broken into before we can send them. The easiest way is by using the Arduino IDE

 and commands. Once the integers have been broken down into two bytes they can then be
transmitted over the I²C bus or serial data stream.

For example, to control the speed of each motor individually you first send the number 3 which indicates the pack is a
command to control the motors. You then send the desired speed of each motor from -255 to +255. Even if you are not
using 4 motors you still need to send 4 speed values. Just use 0 for any unused motors.

Integers
bytes

highByte() lowByte()

There are only 6 commands needed for the ComMotion shield.

1. Controller Configuration Set values such as low battery voltage, maximum motor current etc.
2. Encoder Configuration Set values for motor RPM, encoder resolution, reserve power and stall time.
3. Motor Control Change the speed of the motors.

4. Serial Configuration Set baud rates for each port and select a command port for serial control.
5. Send Serial Data Sends data to a serial port.
6. Shield Status Returns information such as battery voltage, motor currents etc.

http://arduino.cc/en/Reference/Int
http://arduino.cc/en/Reference/Byte
http://arduino.cc/en/Reference/HighByte
http://arduino.cc/en/Reference/LowByte

3

Rover 5
encoder

Scamper
encoders

Encoder Configuration
If you are not using encoders then you can ignore this command.

As the ComMotion uses the time between encoder state changes to determine the actual speed of the motor it needs to
know the motors maximum speed and the encoder resolution to determine what is the fasted speed. When you give the
controller a desired speed from -255 to + 255 the controller then coverts this number into a percentage of the fastest
speed.

Byte Function Short Description
1 2=encoder config. Specifies that the data pack is encoder configuration data
2 maximum RPM Motor RPM at the motors rated voltage (high byte)
3 maximum RPM Motor RPM at the motors rated voltage (low byte)
4 encoder res. x100 800=8 state changes per motor revolution (high byte)
5 encoder res. x100 800=8 state changes per motor revolution (low byte)
6 reserve power % 50=50%
7 max stall time in mS 1-255mS. A value of 0 is invalid and will automatically be changed to a 1.

Byte 1: Must always be 2. This tells the shield that the data pack is encoder configuration data.
Byte 2&3: This is the maximum speed of the motors under load at the rated voltage.
Byte 4&5: This is the encoder resolution x100. For example 225=2¼ state changes per motor revolution.

Not to be confused with encoder resolution per wheel revolution which depends on the gearbox ratio.
Byte 6: Reserve power as a percentage from 0% - 50%. Default is 10%.
Byte 7: Default is 10mS but some experimentation will be required depending on the application.

The default encoder configuration is set for a motor with a maximum speed of 13,500 RPM and an encoder with a
resolution of 8 state chenges per motor revolution. This suits the Scamper robot kit however for a Rover 5 chassis the
speed should be set to 8,500 RPM and the encoder resolution set to 2 state changes per revolution. Incorrect values will
either prevent the motors from reaching their maximum speed or else acheiving their maximum speed at less than
100%.

To ensure that the motors can acheive the desired speed it is recommended to keep some power in reserve to allow for
changing loads. This ensures that even at full speed the robot can still travel in a straight line or the desired angle. If the
reserve is too small then the motors speeds will loose accuracy at high speeds under load. If the reserve is too low then
the robot will not move as fast as possible. Typically 10-15% should be enough but it will depend on the weight of the
robot, friction in the wheels and the terrain. Some experimentation may be required.

The maximum stall time is used by the controller to determine if the motor is just running very slow or has actually
stalled. Larger values may make slower speeds possible but will also slow the controllers response time. Low resolution
encoders will need longer stall times. Some experimentation will be required.

For the Scamper robot kit which has 13,500 RPM motors and an encoder resolution of 8 state changes per motor
revolution a maximum stall time of 10-15mS works well.

For the Rover 5 robot chassis which has 8,500 RPM motors and an encoder resolution of 2 state changes per revolution
(using only 1 of the 2 encoder outputs) a maximum stall time of 25-50mS works better.

DAGU kits use an 8 pole magnet and hall effect sensors however the ComMotion shield will work with any encoder that
generates a digital output. High resolutions are required for a good range of speed control.

Controlling the Motors
Once the shield has been configured we can control the motors with a Motor Control data packet. This is the data packet
you will use the most. If you set the chassis configuration to 3x Omni wheels, 4x Omni wheels or Mecanum wheels then
the controller will automatically do the trigonometry required to calculate the individual motor speeds. This allows you to
control a robot chassis with just 3 integers.

�Velocity: The desired speed from -255 to +255. Positive values are forward, negative values are reverse.
�Angle: 0° is forward, 90º is to the right, 180° is backward, 270° is left. Negative values reverse angle.
�Rotation: Values from -255 to +255. Positive values rotate clockwise.

If you set the configuration for Individual motor control then you only need to send 4 numbers, the speed of each motor
from -255 to +255. Positive values run the motor forwards and negative values run the motor in reverse.

Byte Function Description

1 3=motor control Specifies that the data pack is motor control data

Omni and mecanum wheels Individual motor control
2 velocity high byte M1 speed high byte
3 velocity low byte M1 speed low byte
4 angle high byte M2 speed high byte
5 angle low byte M2 speed low byte
6 rotation high byte M3 speed high byte
7 rotation low byte M3 speed low byte
8 not required - ignored M4 speed high byte
9 not required - ignored M4 speed low byte

Byte 1: must always be 3. This tells the shield that data pack is motor control data.

As are 16 bit numbers they must be broken into using the Arduino IDE and
commands.They can then be transmitted over the I²C bus or serial data stream.

integers bytes highByte() lowByte()

Using chassis configurations
The ComMotion shield has 3 configurations programmed into it. When one of
these configurations is selected then the shield will calculate the speed and
direction of each motor for you based on three integers, velocity, angle and
rotation.

When using any of these 3 pre-programmed configurations, the motors are
always numbered in a clockwise direction as shown in the diagrams on the
right. Match the motor numbers with the motor outputs on the shield.

No matter which configuration you choose, test that the wiring is correct by
trying to rotate. If a motor spins in the wrong direction then swap it's wires
around at the screw terminals.

If you are using mecanum wheels then make sure they are orientated the same
way as shown in the diagram.

Offsetting omni wheels
You will notice in the diagrams that the omni wheels on the triangular chassis
are centered but on the square chassis the wheels are off-center.

This is because with omni wheels it does not matter if they are centered or not.
Only the angles matter. Sometimes offsetting your wheels allows you to make a
smaller chassis because it allows more efficient spacing of the motors.

Other configurations
If your chassis does not match one of these configurations then configure the
shield for individual motor control. Your software can then control the motors in
a way that suits your chassis.

M1

M2M3

M4

M1

M2

M3

M1

M2
M3

M4

120°120°

120°

4

http://arduino.cc/en/Reference/Int
http://arduino.cc/en/Reference/Byte
http://arduino.cc/en/Reference/HighByte
http://arduino.cc/en/Reference/LowByte

Serial Configuration
This data pack allows you to set the baud rate for the serial ports on MCU1 and MCU2 and specify if the ComMotion
shield should accept commands directly from a serial port or simply pass the data to the I²C master for processing. The
default baud rate for each serial port is 9600.

 For the rest of this manual, port 1 refers to the serial port on MCU1 and port 2 refers to the serial port on MCU2.

Byte Function Description

1 4=serial configuration specifies that data pack is serial configuration data
2 buad rate high byte set the baud rate for port 1.
3 baud rate low byte set the baud rate for port 1.
4 buad rate high byte set the baud rate for port 2.
5 baud rate low byte set the baud rate for port 2.

6 serial mode (default 4) 0=pass all serial data to I²C master for processing.
1=accept control data packs from port 1 - pass all data to I²C master for processing.
2=accept control data packs from port 2 - pass all data to I²C master for processing.
3=accept control data packs from port 1 - pass all data back to port 1.
4=accept control data packs from port 2 - pass all data back to port 2.

In modes 0,1 and2, data from serial ports 1 and 2 will be sent to the I²C bus. To indicate where the data came from each
serial data pack will start with an ID header #SP1 or #SP2.

The ComMotion shield will accept commands from the serial port on MCU2 and send back all data to the serial port on
MCU2 by default (mode 4). This means that if you install a Bluetooth, Xbee or WiFly module then the ComMotion shield
can be controlled wirelessly without an Arduino or any other external processor and all serial data received from the
serial port on MCU1 can be sent back through the serial port on MCU2.

In the example below, a pre-configured Xbee module is plugged into the ComMotion shield and a GPS module is
connected to port 1. All data received from the GPS module will automatically be transmitted back through the Xbee
module on port 2.

Send Serial Data
This data pack is used to send data to a serial port. The maximum data limit per pack is 30 bytes due to the I²C buffer. If
you need to send more than 30 bytes of serial data then you must send multiple serial data packs. To prevent buffer
overflows when sending multiple data packs it may be necessary to limit data pack size and send more, smaller packs.
This will slow the transmission rate slightly allowing the buffer to clear between packs.

Byte Function Description

0 5=serial data specifies that the data pack is serial data
1 select serial port 0=previous 1=MCU1 port 2=MCU2 port

2-31 serial data of any length up to 30 bytes

Byte 0: must always be 5 to tell the ComMotion shield that you want to send serial data.
Byte 1: selects which serial port to send the data to.

The rest of the data pack is the data to be sent.

Receiving Serial Data
As mentioned in Serial Configuration, all serial data received from either serial port will be directed as determined by the
serial mode. If for example the ComMotion shield has a serial LCD display on serial port 1 and a GPS module on serial
port 2 then set the mode to 0. The Arduino will then receive all data from the GPS module through the I²C bus and can
then display the data by sending it to port 1.

Xbee module

GPS module

MCU1
Serial port

MCU2
Serial port

5

Requesting Shield Status
The ComMotion shield can give you information you may find useful in your programs. By requesting status data from
the shield you can read the battery voltage and how much current each motor is drawing. You can read analog sensors
connected to the spare analog inputs. If you use encoders then you can read the counts of each encoder to measure
distance. You can even request error information from the shield such as which motors had stalled.

Byte Function Description

1 6=Status request Specifies that the data pack is a status request
2 data required Each bit is a seperate request allowing any combination of status information.

Byte 1: must always be 6. This tells the shield that the data pack is a status request
Byte 2: each bit is a different request as listed below. You can request any combination of status reports.

The status reports will be sent in order from bit 0 to bit 7. For example, if bits 3 & 4 are high (8+16) then 6 bytes will be
returned for the analog inputs on MCU1 followed by 6 bytes which are the analog inputs from MCU2.

Bit 0: Returns 8 bytes, the encoder count from each motor high byte first.
Bit 1: Resets all encoder counters. If bit 0 is high then the counters will be read before being reset.
Bit 2: Returns 8 bytes, the current draw of each motor high byte first.

†Bit 3: Returns 6 bytes, the analog inputs A3, A6 and A7 from MCU1, high byte first. A7 is battery voltage.
Bit 4: Returns 6 bytes, the analog inputs A3, A6 and A7 from MCU2, high byte first.
Bit 5: Returns 1 byte, the error log for the motors.
Bit 6: Returns 1 byte, the error log for communications.
Bit 7: Clears the error logs. If bit 5 or 6 are high then those error logs will be read first.

† Battery voltage = MCU1analog input A7 * 30 / 185. A result of 84 = 8.4V

Motor Error Log
When you request the motor error log you will receive a single byte. A value of 0 indicates no errors.
Each bit indicates a different error.

Bit 0: A high value indicates that motor 1 is drawing the maximum current as set in the shield configuration data.
Bit 1: A high value indicates that motor 2 is drawing the maximum current as set in the shield configuration data.
Bit 2: A high value indicates that motor 3 is drawing the maximum current as set in the shield configuration data.
Bit 3: A high value indicates that motor 4 is drawing the maximum current as set in the shield configuration data.
Bit 4: A high value indicates that motor 1 drew excessive current and caused a shutdown to occur.
Bit 5: A high value indicates that motor 2 drew excessive current and caused a shutdown to occur.
Bit 6: A high value indicates that motor 3 drew excessive current and caused a shutdown to occur.
Bit 7: A high value indicates that motor 4 drew excessive current and caused a shutdown to occur.

Normally if the current draw of a motor reaches the limit set in the configuration data then the PWM value to that motor
will be reduced to limit the current to the maximum value. If the motor current exceeds a safe level for the shield then the
shield will shutdown in an attempt to prevent damage.

In the event of a short circuit, some batteries can deliver very high currents and the shield may not be able to shutdown
quick enough. If you are using Lithium batteries then a 2.5A, fast blow fuse should be wired in series with each motor as
an added level of protection against short circuits.

Communications Error Log
When you request the communications error log you will receive a single byte. A value of 0 indicates no errors.
Each bit indicates a different error.

Bit 0: A high value indicates an I²C buffer overflow.
Bit 1: A high value indicates serial port 1 buffer overflowed.
Bit 2: A high value indicates serial port 2 buffer overflowed.
Bit 3: reserved for future software updates.
Bit 4: reserved for future software updates.
Bit 5: reserved for future software updates.
Bit 6: reserved for future software updates.
Bit 7: reserved for future software updates.

6

Re-programming ComMotion
On rare occasions the flash memory can get corrupted during a brown out. If this does happen then the ComMotion
code can be easily restored using the ArduinoISP example code that is included with the Arduino IDE.

Install the ArduinoISP example code into an Arduino board and then plug in the ComMotion shield. In the Tools menu,
set the board type as UNO and select "Arduino as ISP" as your programmer.

7

RST

ISP
header

MCU
selection

switch

SparkFun
RedBoard

with
ArduinoISP

example code
installed

Short the jumper RST on the ComMotion shield. This will connect D10 of the Arduino board to the ComMotion shields
reset circuit. Now use the MCU selection switch to select which processor to reprogram. Load the ComMotion code and
use the "Upload Using Programmer" option to upload the code.

The same code should be uploaded to both processors so upload to MCU1 first and then again to MCU2. Once the code
has been uploaded to both processors then put the switch to the center position to isolate the ISP header and open the
jumper RST.

In extreme cases the fuses may also need to be reset. This is done by burning the bootloader to each processor
first.The bootloader will be overwritten when we upload the code but this is the easiest way to ensure the fuse settings
are correct. Once the bootloader has been loaded into both processors, upload the code again.

Modifying the code
Only experienced programmers should attempt to modify the code. If you intend to modify the code then you should
understand that the code is time sensitive. You cannot use functions such as delay() or delayMicroseconds() as this will
prevent the motor speed control code from working correctly. You should make sure your code works on both
processors using the variable "byte mcu;" to determine which mcu it is running on. Use the program tab [IOpins.h] as
your wiring diagram.

ComMotion Specifications

Processors: 2x ATmega328P (16MHz)
Supply voltage: 6V – 16V
Logic voltage: 5V @ 1000mA*

Wireless support: Xbee / WiFly socket with voltage translation
Xbee / WiFly power: 3.3V @ 300mA

Battery monitor range: 0V – 17V
Battery monitor resolution: ≈0.02V
Analog Inputs: 5x 10bit (A3,A6 MCU1 – A3,A6,A7 MCU2)

Motor drivers: 4x FET “H” bridge
Motor current continuous: 2.5A (each motor)
Motor current stall: 4A (each motor)
Current monitor range: 0A – 5A (each motor)
Current monitor resolution: ≈5mA (each motor)

I²C bus voltage: 5V or 3.3V (selected by IO_REF pin)
I²C bus speed: 100 kbit/s
I²C addresses: 16 selectable pairs (software configurable)
Serial ports: 2x 5V TTL logic (FTDI headers)

*Current limit for 5V regulator is dependant on supply voltage and ambient temperature. The current ratings below
assume an ambient temperature of 25°C.

1A @ 6V 580mA @ 8.4V 285mA @ 12V 180mA @16V

8

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

